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The Discovery & Product: 
   We have discovered new mathematical methods for analyzing any type of 
network and specifically identifying anomalies. We have rendered this algorithm into a 
software product and seek applications. This white paper is an informal overview of our 
product:  ExaSphere – A Network Analysis Engine. 
 
 
Introduction 
 Our research team has made a set of very important advances in the description of 
networks.  These advances are both at the fundamental mathematical level as well as a 
practical level where we have developed new software tools for network analysis and 
tracking.   Most of the other articles and material represented on this site are either highly 
technical or highly mathematical and are relatively formal. This paper is intentionally 
very informal and at the lay level mathematically and technically. Yet at the same time 
this paper addresses what we believe to be the critical philosophical and foundational 
issues of this new technological domain that is absolutely critical in importance in the 
new ‘information age’.  In spite of the informal nature and non-mathematical nature, this 
presentation will nevertheless center on the issues that will face our society as we move 
forward in this 21st century.   We will see that these issues are of incredible complexity 
and difficulty and at the same time represent some of the greatest opportunities for 
technological and commercial advances in addition to truly fundamental advances in pure 
mathematics and computer science.  The primary effort here is to present a complete 
foundation on the descriptive level from a new perspective     
 
What are networks? 
 A network is constructed from a set of points, called nodes.  The nodes can have 
any distinctive names but for convenience we use the numbers 1, 2,  3,  … N to 
distinguish the nodes.  The network is defined as a set of connections between these 
nodes where these connections are labeled by numerical values that are not negative. 
Thus we can represent any network by an array or matrix of numbers like C1,8 = 46 where 
46 is the ‘weight’ or degree of connection between nodes ‘1’ and node ‘8’. Thus a 
network is exactly specified by a square array of  non-negative numbers but with the 
diagonal undefined.  Typically one takes the diagonal arbitrarily as a ‘0’ or a ‘1’ or other 
value but this arbitrariness rests on the fact that the strength of connection of a thing to 
itself is not defined.   Also one might note that the array might be symmetric (ie C1,8 = 
C8,1 called an undirected graph)  or not symmetric (  C1,8 ≠   C8,1  called a directed graph). 
 An example of a network might be the number of airline flights that are flown 
between two given airports in one day.  Another example is the number of emails that are 
sent from one computer to another computer in a week.  Still another example is the 
amount of money in units of $1,000 that was transferred in a given month between two 



 2

given bank accounts.  Two final examples might be the power transferred between two 
electrical substations in units of Mega Watts, or the number of cars that travel between 
two interstate interchanges in a one hour period.    
 Thus one quickly sees that networks are totally pervasive in our society and can 
be represented in some of the following groups: 

1. Communications Networks 
a. Internet transfers (email, FTP files, images..) 
b. Telephone calls  
c. Mail, Fed Ex, UPS 

2. Transportation Networks 
a. Air traffic between airports 
b. Highway traffic at different levels of highway networks 
c. Waterway traffic 
d. Railroad networks and shipments 
e. Pipelines transfers among junction points 

3. Financial Networks 
a. Banking transfers among bank accounts 
b. Accounting flows in a corporate or government agency 
c. Ownership and investment linkages among stocks and entities 
d. Input-Output economic flows of a nations or states economy 

4. Utility and Energy 
a. Electrical grids with the transfer of power between substation, plants and 

consumers. 
b. Natural gas pipelines  
c. Water and sewer services among sources and disposal points 
d. Solid trash and waste flows 

5. Social Networks 
a. Criminal and terrorist networks 
b. Organizational charts and relationships 
c. Social organizations  
d. Financial-social alliances, cooperative links 

6. Manufacturing Processes 
a. Tracking of just-in-time flows for manufacturing and work flows 
b. Assembly line flows 

7. Electrical & Mechanical Networks 
a. All electrical devices with electrical flows 
b. Specifically all computers and collections of computers 
c. Mechanical systems with energy flows among components 

8. Biological, Health, and Disease Networks 
a. Disease networks and contagious flows among living entities 
b. Blood, lymph, digestive, nutrient  flows in the body 
c. Neural networks  

 
Why are networks different from other problems in the sciences? 
 If we consider a physical system such as a baseball, we can monitor its state 
(where it is, how fast it is going, its acceleration, etc) using a vector that points to the ball. 
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A vector is described by a set of numbers.  If it is a  baseball moving in the air then we 
need three numbers (x, y, z) to specify its position (ie the vector).  These might give 
latitude, longitude, and altitude of the ball. Or we might use the position in feet from a 
given coordinate system. Likewise the velocity of the ball can be given by its velocity in 
each of the three directions: (Vx Vy, Vz ) again a vector in three dimensions.  If we are 
going to be more complete, then we would also monitor the angular position and spin 
(angular velocity) of the ball.  But again these are vectors in three dimensions thus giving 
us two vectors in three dimensions.  Furthermore if we have a thousand such baseballs 
that we wish to monitor then it just becomes a vector in three thousand dimensions – 
complicated but understandable in principle and executable on a computer.   The same 
situation even holds in the theories of relatively and quantum mechanics: the state of a 
system is given by a vector which is a list of numbers. The change of these vectors in 
time is given by a matrix or two dimensional array of numbers that transform one from 
the old values to the new values.  Thus in summary one can see that all systems in the 
physical world are basically described by vectors (a one dimensional list of numbers) and 
the change in time is given by a matrix (two dimensional array of numbers).  Furthermore 
the changes over time are usually understood in principle and obey know laws of 
classical and quantum physics.  But ….   
 
Networks are far more complex objects: 
 But we have seen from the examples of networks above that a network is 
specified by a matrix or two dimensional array of numbers.  This is a whole order of 
complexity more difficult that classical, relativistic, and quantum mechanics.  This 
fundamental difference is perhaps better seen when we realize that the vector that 
describes a particle or even a set of  particles, is a single arrow or point in a space 
whereas a network is represented by a large number of vectors all at the same time.  Thus 
a network of a million computers is represented by a matrix of  a million squared or a 
trillion numbers. Furthermore,  these trillion numbers are rapidly changing and do not 
obey known laws and almost certainly are not linear.  Thus we are faced with not just a 
million coordinates for a single point but rather a million numbers for each of a million 
points simultaneously – and without known laws of change with time! 
 
Do we not have similar situations in the natural world such as with gases? 
 In physics and chemistry, we can have a very large number of particles as we do 
with a gas or a fluid consisting of trillions of trillions of particles.  We certainly are not 
interested in knowing where each particle is and how it is moving.  Rather, we seek 
summary values to know what state or condition the system is in and how the system is 
changing.  These ‘metrics’, the ‘summary values’ of the trillions of positions and 
velocities of the individual particles, are the familiar concepts of temperature, pressure, 
volume, heat, internal energy, and entropy.  With these few variables, we can assess the 
state of the system, how it is changing, and whether or not it is in equilibrium.   
 
Can we define and develop ‘summary metrics’ for networks?  
 This is difficult for the following reasons:  First, networks do not have an innate 
sense of ‘distance’ from one node to another.  On the internet for example, one is as close 
to a user in China as in the same county here in the US.  While it is true that some 
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networks such as airlines and highways have longitude-latitude values for each airport or 
intersection, these values are actually of little meaning to the network per se which is 
defined by the existence of the nodes and the internodes’ connections, independent of and 
abstracted from the distance.   Without a concept of distance, we cannot form the notions 
of ‘volume’ or of ‘pressure as force/area’.     
 Next we realize that on networks there is no conserved energy as there is in a gas 
that is isolated.  Thus we cannot define the random energy of ‘heat’ or the average 
random energy which represents ‘temperature’.  In particular this is emphasized because 
there is no well defined “equilibrium” but only average behavior.   Finally, one can 
consider entropy but entropy is always defined as a measure of order or disorder and is 
defined on probability distributions.  The network does not have intrinsic probability 
distributions but only the set of connections given by the connection matrix Cij.        
 
A nice thing about networks. 
 One advantage to dealing with networks is that one can expand or collapse the 
network based upon the nodes.  Specifically one can treat a single computer as a single 
node, or treat a whole department of computers as a single node, or even all computers at 
a single company as a single node.  Thus one can effectively collapse a network to ignore 
the internal traffic system.  
 
A deeper look at the problem. 
 Thus it is not obvious how to summarize all of the values of the connection matrix 
down into a few representative variables as one does with thermodynamics.  Like the 
positions and velocities of particles in a gas, the connections in the C matrix are all of 
equal importance and value. Thus it is not clear how to summarize the data in a useful 
way.  One of the core problems is that the connection matrix is not even unique.  If for 
example another person were to look at the same network, they would probably not 
number the nodes in the same way. Thus when the second person writes the C matrix, 
since the rows and columns are in different orders, the matrix will look entirely different. 
Whereas a given C matrix gives a definite network topology, the converse is not true and 
the same network can be represented by N! (i.e. N*(N-1)*(N-2)*……1) different 
matrices corresponding to the different ways one can number the nodes.   Here one gets 
to one of the fundamental problems in network theory that the nodes have no natural 
order and thus any numbering of them is equivalent.  To simply know if two networks are 
equivalent in their topology (connectedness), one must perform all possible renumbering 
of nodes and then compare the resulting C matrices.   It is easily verified that no existing 
computer now or in the foreseeable future will be able to even compare medium size 
networks to see if they are the same.  So one would ask what is done now if there are no 
metrics.  First let us review the requirements for an ideal system and then review how 
things are currently done.   
 
Requirements for the network metrics: 
  What are the characteristic requirements that we would hope that our metrics 
would satisfy?  (a) Capture topological essence:  We would expect our metrics to be 
indicative of dominant structure of the network.  In particular, if the network topology is 
about the same then we expect the metrics would have about the same values.  (b) 
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Hierarchical in Detail: We would actually like a ‘sequence of metrics’ or multiple metrics 
that begin with the most dominant, course, and holistic aspects of the network and 
sequentially go to finer and finer levels of detail. (c) Intuitive:  We would like for the 
metrics to have an intuitive meaning in order to guide our understanding of the values 
and ranges and general behavior of the metrics.  (d) Computationally Fast:  We would 
hope that the metrics can be rapidly computed  from simple sums and powers of the 
elements as opposed to complex mathematical functions (such as eigenvectors and 
eigenvalues which take far too long to compute) that can only be computed on very small 
networks.  (e) Nodal Independence:  We would like to have metrics that are unchanged 
by any renumbering of the nodes and thus reflective of the topology and not the 
numbering. (eigenvalues are an example that are independent).  (f) Well Defined 
Mathematically:  The metrics should rest on a solid mathematical foundation and not be 
arbitrary and thus be totally unambiguous. (recall that the C matrix specifying the 
topology is not defined on the diagonal!). (g) Complete:  We would like to have metrics 
that in the hierarchical numeration can potentially be an exhaustive description of the 
topology (not that we wish to recreate all of the trillion values but rather that we would 
like to know that the hierarchical expansions are in some sense “complete”.  In summary, 
we would  like to have something like the expansion of sound waves in harmonics 
(Fourier analysis of orthogonal functions).    
 
What do people do without well defined metrics? 
 Actually they can make a lot of progress but it is at the lowest of levels.  One can 
count the activity of a matrix such as C(t) at a given node ( computer server or bank 
account).   The average transmission out or transmission in will have certain a certain 
mean value and range and one can test this continuously for each node. This is 
traditionally done on computers that function as servers in that the administrator simply 
looks at the number of incoming transmissions on each port and looks at the outgoing 
transmissions from each port.  By knowing what is normal, the administrator can judge if 
these transmissions are appropriate or if something seems wrong. The same is done on 
electrical grids and bank accounts.  Naturally one can develop detailed statistics and 
displays of the behaviors.   Work in the last few years has indicated that most networks 
are not random but are what are called ‘scale free’ meaning that a few nodes become very 
highly connected to a very large number of other nodes (and act as hubs similar to large 
airport hubs) while most nodes just connect to a few nodes.  The pattern for this is linear 
in logarithms of the variables and is still not understood or expected.  But in spite of vast 
research, there is no general set of metrics that can provide a “space” for the 
representation of networks in general and which satisfies the criteria above.     
 
Our Initial Discovery (sorry - one technical paragraph) 
    The intent of this white paper is to avoid the highly technical aspects already 
presented in the attached documents.  So we will summarize by making just one technical 
point: We have been able to show that every possible network is in exact one to one 
(isomorphic) correspondence to an infinitesimal generator (Markov Lie algebra element 
with deterministic setting of the diagonal of C) of a Markov Monoid transformation 
(whose columns are automatically probability distributions).  Now that we have a set of 
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probability distributions for each node, we can compute the entropy associated with the 
transmission out from and into each node.    

This reduces the N2 values down to 2N values – a considerable reduction. These 
2N values of entropy (N rows plus N columns) give us a measure of the order or disorder 
associated with the topology of connectives at that node.  But it is easy for a lay reader to 
understand this entropy which we now describe. In lay terms, we make a specific 
assignment of the diagonal elements of the C matrix and get a new matrix that reflects the 
complexity of all the topology of the system in a set of probability distributions. These 
probabilities will be shown to be associated with the infinitesimal flows of a conserved 
entity that flows over this network at rates proportional to the values for the topology. We 
will return to this later.   
 
What does entropy mean? 
 Most of us have heard of the term ‘entropy’ and know that it is a measure of the 
disorder in a system.  We also know that entropy always increases and a perfect example 
is that stuff just gets into disorder all by itself.  The reason is that ‘order’ or ‘information’ 
is not the natural state of things. It is just not highly probable that all the grass will grow 
at exactly the same rate and stay uniform, nor that all the pens and pencils are going to 
naturally gravitate back to the same desk drawer any more than dust is all going to fall 
and collect in the trash can all by itself.  These are the fundamentals that we now want to 
make more tangible for our use.   
 Information is usually defined as the negative of entropy and represents order.  
We will use the terms ‘information’ and ‘entropy’ interchangeably as each is the negative 
of the other and they measure the same concept. Information was first defined by 
Shannon in 1948 as a method of monitoring information loss and redundancy of 
transmission and communications signals.  It was Shannon that defined information as 
the logarithm of the probability (based upon the fact that probabilities of independent 
systems multiplied thus information must be the log of the probability in order to add for 
independent systems).  

So rather than talk about entropy lets talk about information and order in a 
system.  When we want to get things organized, we put all the trash in the trash can, the 
paper in the paper drawer etc.  In other words we move the probability distribution so that 
it peeks at one place thus we know where to find things.  This gives us order.  How do we 
measure it? One good answer and the one we predominantly use in our work is that we 
take the square of the probability distribution at each place, add it up, multiply by N and 
take the logarithm of the result. (i.e. we define information for column ‘j’ as Ej= log2 
(NΣiMij

2) ie the log of N times the sum of the squares of the Markov probabilities). How 
does this work?  Well when most of the dirt is in the trash can, then the probability at that 
point of finding dirt is very high so if we square the value, it becomes much higher still.  
Adding up all the squares of the values of the probabilities will give us a representation of 
how well all the trash is ‘collected together’.  It is true that we could use another higher 
power such as cube or the fourth power but that is not necessary to consider now as the 
second power will suffice.  

When we use the connection matrix to make this Markov matrix, we get a 
probability distribution at each node that gives the probability that such a transformation 
would transfer something to that node based upon the strength of the associated value in 
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the connection matrix.  It takes quite a bit of explanation but it turns out that the 
connection matrix generates an infinitesimal flow of a ‘probability’ from one node to 
another.  This is not a real flow but it does reflect the topology of the connection matrix 
in the form of the Markov matrix of probabilities. As a consequence, when we compute 
the entropy (or information) of each column in the Markov matrix then we get a measure 
of the degree of organization associated with transfers to that node from other nodes. If 
all other nodes are about equally transferring to that node (most values are about the 
same) then the entropy is high and the information function will be low.  But if only a 
few nodes are transferring to that node in this time frame, then the information will be 
high exactly like having all the trash in one trash can.   All this is to say that the value Ej 
is a measure of how organized the ‘connections’ are flowing to the node j.   .   

Restating this we can say that the Markov theory gives us some mathematical 
method for getting an incoming probability distribution of the Markov matrix say M11 
M21 … MN1 representing a probability for each of the N nodes.  We know that the sum of 
these is unity since the probability of doing something is one  thus M11 + M21 +… + MN1 
=1.   This is true of all probability distributions.   
 But one can have an even distribution where M11 = M21 =… = MN1 … and this 
distribution represents the maximum disorder or entropy and thus the least information.  
We do not know where something is located.  It is like having all the dirt and trash in a 
room evenly spread out all over with the same probability.  But when we clean up we 
make all the probabilities for dirt and paper equal to zero except for one place – the trash 
can. Thus the maximum information or order is where say M21  = 1 and thus the rest are 
zero  M11,  M31… = 0.              
 
Now we have measures of the ‘organization’ of the network: 
 We now have this information metric for each column Ec

i of the Markov matrix 
that is generated from the connection matrix that represents all the connections in the 
network.   We have gone from N2 values to N.  We can do the same thing for the rows 
that we did for the columns and get the N information metrics Er

i for each transmission 
out from the nodes. So what good is  this? 
 The next thing to realize is that it does not matter in this given time frame which 
node is doing what but rather what is the pattern of the information values. In other words 
we can sort the values Ec

i  in order and form a curve that is always decreasing (or 
sometimes flat) and this curve give the profile or ‘spectra’ of the organization of the 
transfers into the nodes.  Likewise we can use the same sort order to obtain a curve for 
the transfers out (i.e. the row values).   
 Now here is the main thrust of the idea: If the network transfers in and out from 
nodes is about the same as it was in the previous period of time, then the curve will not 
change.  Thus we can study this curve for a given network and determine when it changes 
by overlaying it on the average curve for that network.  If the curve rises up or falls 
below the normal curve, then the nodes at that point are behaving in an anomalous 
fashion.   We can use the lookup table (from prior to the sort) to see which nodes are 
doing this and then take further action in analysis.      
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So how does this software work? 
 
 Well the first thing is to realize that the software is general purpose and will work 
on electrical power grid networks as well as on financial networks.  The first issue is to 
define the 4 network variables: Time, Node i,  Node j,  Weight.  This is the data that must 
flow electronically out of your database and into this program.  Time will normally 
include the date and might be the number of seconds since a fixed date such as Jan 1, 
1900.   The node identification (node i and node j) can be in any form that is unique such 
as a bank account number, air port three letter designation,  or a substation for a power 
grid. Our software will automatically number the nodes in a sequential method, and set 
up a lookup table so you can later see what node 522 really references.   Also this allows 
other analysts to study the data without any confidential information such as IP addresses 
for computers or individual bank accounts being seen (as long as they do not have the 
look up table).   Finally the weight is the measure of the strength of connection.   There 
are reasons that you might want to use the logarithm of a fund transfer rather than the 
dollar value itself as it is probably not true that a $5,000 transfer is 5 times as ‘strong’ as 
a $1,000 transfer.    

The next decision is how long in time to make the window for the construction of 
each C matrix.  You will want to make it long enough to get representative data on the 
structure of the network but not so long that the changes in time are lost.  For example, 
the window of time might be one whole day for financial transactions but might only be a 
few seconds for an electrical grid.  The data records will be added up into a new C matrix 
for the selected window of time with weights being added to any values already in the 
cells.  For example a record like  1354.5,  34,  758,  12.2  for  t, i, j, would add the value 
12.2 into the element C34,758   and so forth for all of the period of time in that window say 
from t=1300 to t=1400.    

After the C matrix is constructed for this window of time, we must sum the 
elements in each of the rows and put the sum in that corresponding diagonal element with 
a minus sign.  (This is to create the infinitesimal generator for the Markov transformation 
that will give us the probability distributions in the columns).  We next normalize the 
matrix by dividing all matrix elements by the negative of the total of all diagonal 
elements. This somewhat normalizes the matrix to a unit trace and makes all matrices of 
the same intensity.  We keep that previous value of the total diagonal, A(t), and plot it as 
the amplitude later on separately from the entropy spectra. 

Next we form the M matrix using the series expansion M=eλC =1+ λC+λC2/2! +.    
Here we must choose the number of terms, k, that will be used in the expansion as well as 
the expansion parameter λ.   One must be somewhat familiar with series expansions to 
realize that a choice of a very, very small λ will mean that higher powers are extremely 
small and thus the number of powers used, k, should not be high.  Likewise a larger value 
of λ will lead to a need to use more powers of C in the expansion.   

Next, the program computes the entropy of each column and sorts the results into 
a spectra (distribution of entropies) of values in order.  It is this spectral curve that 
changes each time the window changes.  It will normally be near its average value but 
wherever it deviates significantly, we can check those nodes to try to see why there is an 
abnormal deviation. How do we know about the deviations?  One must first establish 
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what the normal distribution is and then compare the normal with the spectral curve in 
that window of time.  This can be done by summing the squares of the differences 
between the two curves and arriving at one value say Ec(t). The software will redo this 
entire procedure also for the rows and arrive at a value Er(t).  The software then monitors 
both Ec(t) and  Er(t) along with the amplitude value of the trace A(t) that we referred to 
earlier.  In conclusion, the software plots these three functions over time as well as the 
superposition of the instantaneous entropy spectral curves with normal spectra for both 
the rows and columns.  It is these two curves that let one identify where in the network 
the anomalies are occurring.    
 
But what is ‘normal’ behavior for the entropy spectra? 
 The normal behavior might in fact be different for 9 AM on Monday morning 
than it is on a Sunday afternoon due to the differences in work schedules.  So we must 
use a ‘normal’ spectra that will reflect the pattern of behavior for that time of day, day of 
week, time of month, and in consideration of holidays.   Additionally, those who are 
familiar with network behavior are aware that other factors can alter the values such as 
weather and its influence on electricity consumption in a power grid.  Our software can 
‘lock in’ the spectra under different circumstances and use this as normal for future 
comparisons.  More sophisticated computations are possible.    
 
What will this software tell me about my network? 
 The ExaSphere Network Analysis Engine is a general purpose algorithm that 
determines “if things are about normal and if not then where are they abnormal”. More 
specifically, the software compares the entropy profile at a given time to the normal 
profile.  It is important to realize that the comparison is made not with the idea that each 
node continuously has the same behavior but rather that some node will behave the way 
that some other node behaved in the normal profile in analogy with thermodynamics. 
Other more detail analysis can be done with these tools but this gives the user a general 
overview.    
 
What is the current objective in ExaSphere? 
 Our applications of the ExaSphere Network Engine software has thus far been 
exclusively for monitoring internet traffic on servers to look for attacks, malicious 
processes, and system malfunctions.  We are now are ready to deploy our software in 
other environments such as power grids and gas distribution; financial network structures 
and ownership networks; telephony networks; social, biological, and disease networks; 
and specifically the diverse types of transportation networks (highway traffic, 
international shipping, airline networks, and trucking networks). 
 We seek to deploy our software in well established companies, organizations, and 
military environments that will commit to testing the software on a no-cost basis for a 
limited time in these and related specific application areas.  The specific objective is to 
learn the degree of functionality and applicability in such diverse network areas.   
Please contact:  
Joseph E. Johnson, PhD 
Email:  jjohnson @ sc . edu  or Phone: 803-777-6431 
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