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Abstract

Networks are a vital part of nature and society, yet many aspects of how networks

function are still largely unknown. From understanding the internet to biology, chem-

istry, and physics, networks play a role, but even some of the most basic questions

about networks can be difficult to answer. How are two networks alike or different?

How do networks within networks form and how can clusters be detected? As net-

works change with time, how can we monitor those changes? The answers to these

questions are vitally important to humans’ understanding of the world. Better under-

standing of networks allows for things like more efficient electrical distribution grids

and more reliable real-time network intrusion detection systems. It also allows for a

better understanding of how nature forms networks like the bonds that form molecules

and the networks that carry water from the mountains to the sea and back again.

Network analysis and cluster detection is a dynamic area of mathematics featuring

many different approaches. This research is intended to approach network analysis

using Markov matrices and methods normally reserved for physical systems. Three

methods were used in this project to illuminate network classification and behaviors:

multi-order Renyi entropy comparisons, eigenvalues/eigenvectors analysis to detect

network clusters, and property tables used to create networks with clusters. All three

methods produced promising results and hint that this new way of viewing networks

can reveal some information that previously lay hidden.
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Chapter 1

Introduction

Networks are everywhere and effect the lives of everyone on Earth on a daily basis.

Telecommunication networks route data to people next door or to people on the

other side of the planet in fractions of a second. Financial networks that transfer

money from one person or organization to another are the backbone of the world

economy. The modern technological age would not be possible without electrical

networks that power the infrastructure upon which the world depends. The entire

planet is more accessible than it has ever been in history because of the complex

transportation networks that take people from one point to another. Those are just

a few of the obvious world-wide structures that people think of when they think of

networks. There are however, more subtle networks that are not as obvious to most

people. As pointed out by Singer, the branching structure of leaves and the network

of blood vessels in the human body are but two examples of nature forming nested

loop networks to resist damage [8]. McVittie suggests that even genes and cells are

better understood in terms of networks [9]. A deeper understanding of networks can

assist the scientist in better understanding nature, but can also help prevent failures

like internet outages and power failures, according to Bashan et. al. [10], and make

the city bus system more efficient and more economical. Even though all of these

networks are very different, Sinha shows that there are certain universal principles

that govern core network structure and behavior [11]. This research is an attempt to

discover some of these core principles.

Networks are defined as a set of N points called nodes and the non-negative
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strengths of the connections between these nodes. The nodes themselves can be ar-

bitrarily numbered from 1 to N. The term "strength of connection" can have many

meanings depending on what type of network is being described. For example, the

strength of connection between people on a social network could be defined as the

number of messages exchanged during a certain time period. The strength of con-

nection between two airports could be defined as the number of passengers traveling

from one to the other in a given day or perhaps the total number of flights from one

to the other. It is important to note that, depending on the definition, the network

may or may not be symmetric. In the example of the airports, there may be far

more flights from airport A to airport B than from airport B to airport A. So the

A to B connection would be much stronger than the B to A connection. Once the

definition of the strength of connection is determined for a given network, it is simple

to represent the network with a matrix, referred to in this paper as the connection

matrix, Ci,j. The element in the ith row and jth column is the strength of connection

from node j to node i. Note that the strength of connection is always a positive value.

To denote a connection incoming to node j from node i, the strength of connection

value should go in the jth row and ith column. In each case, the column represents

the source node and the row the destination node. If the strength of connection does

not have a directionality, then the i, j element will be the same as the j, i element and

the matrix will be symmetric. Following this prescription for building the connection

matrix, leaves the diagonal elements of the matrix undefined since it makes no sense

to describe the strength of connection of a node to itself. Since the diagonal is un-

defined, the Ci,j matrix is an ambiguous mathematical entity. It has no eigenvalues,

eigenvectors, nor an inverse. The solution to this problem with the Ci,j matrix is

to model the network using Markov monoids. This process is described in the next

chapter.

There are other difficulties with analyzing networks. The topology of the connec-
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tivity of things is one of the most difficult mathematical domains. First, there is no

useful classification system for large and complex networks. According to Meador,

for simple networks, labels such as ring, tree, star, bus, and mesh can be applied [12]

and are mainly used in the realm of computer networking, but even slight complex-

ity can lead to ambiguity in labeling. Structures like trees of stars or rings of trees

can occur. When it comes to large networks like power grids or air traffic however,

there is no satisfactory way to classify them. Computer network topologies to which

a label can be applied were designed to be that type of topology for functional rea-

sons. Classifying a large, complex network that arises through natural or man-made

processes as being composed of the labeled topology types may help aid in under-

standing why that network formed in the way that it did. Second, there is not even a

method to uniquely define a network. Since the nodes can be arbitrarily numbered,

for a given network with N nodes, there are N! ways to describe that network with

a Ci,j matrix. Thus not only is it difficult to compare two networks, it is hard to

take two Ci,j matrices and tell if they describe the same network or not. One impor-

tant problem that depends on the solution of the problem of comparing networks is

comparing a network to itself at two different times. This is important to allow the

study of the evolution of a network over time to detect intrusions or other network

problems. Finally, detecting clusters, tightly interconnected subnetworks within net-

works, is a problem that has no accepted method of solution. Estivill-Castro describes

many algorithms for finding clusters [6] such as connectivity-based, centroid-based,

distribution-based, and density-based algorithms. Many of these methods, however,

are heavily dependent upon a certain type of network definition and there are no

accepted ways to evaluate the effectiveness of the analyses. The work described in

this paper approaches solving all of these problems by first fixing the ambiguity in

the Ci,j matrix. Then, more traditional analysis methods can be brought to bear on

these problems.
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There are other computer network analysis methods that attempt to detect anoma-

lies in network traffic and to model networks as Markov processes. Intrusion detection

systems (IDS) continue to rise in importance on today’s networks as more and more

of the world’s business moves online. As targets become more valuable, attempts

to penetrate modern protection systems skyrocket. Callagari states that the goals

of modern hackers include eavesdropping, downloading unauthorized information,

tampering, spoofing, flooding networks to cause service disruptions, injecting mali-

cious code, exploiting code flaws, and cracking passwords just to name a few [18].

To mitigate these attacks, there are two types of IDS as described by Brindasri et.

al.: signature-based IDS (SBIDS and anomaly-based IDS (ABIDS) [16]. The SBIDS

method works only against known attacks. Improving the ABIDS systems offers hope

of detecting yet unused attacks as they happen. Network comparisons over time are

the basis for ABIDS. Budalakoti’s work shows how these methods learn the networks

normal profile and alert on the deviations from that profile (anomalies) [17] while at-

tempting to minimize false positives. Bedajena and Rout attempt to detect network

intrusions by modeling networks using hidden Markov models and detecting changes

in probablilities of transitions between nodes [15]. The occurrence of low probability

events is indicative of an anomaly and a possible intrusion [16]. The analysis work

described in later chapters here use volume or counts of messages from one node to

another, but Diaz et. al. suggest that this Markov modeling technique can be used at

the protocol level by looking at the messages themselves or the sequence of messages

[19].

Fortunato points out that detecting clusters, or community structures in networks

is important to any area of study where systems are represented by graphs [21]. Un-

derstanding the nodes and structure of clusters goes a long way toward understanding

the efficiencies (or inefficiencies) or a structure along with its vulnerabilities. For ex-

ample, within a cluster, a node with a large number of edges may hold a position of
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particular importance. Despite the importance of the problem, there are problems

with the solution that result in a great number of methods attempting to solve it.

Fortunato’s work also suggests that the biggest obstacle to a solution is the fact that

the elements of the problem are not rigorously defined, resulting in arbitrariness of

the methods and solutions [21]. No definition of a cluster is universally accepted [21]

and often depends on the system being analyzed. According to Fortunato, after a

paper by Girvan and Newman in 2002 [22] [21], brought great interest to the field

of cluster detection in 2002, many physicists became interested and brought to bear

their analytical techniques. In their paper, Girvan and Newman discuss the tradi-

tional method of cluster detection, hierarchical clustering, and their new proposed

method, edge betweenness and community structure [22]. In hierarchical clustering,

vertices are weighted and then edges are added one by one in order of strongest to

weakest pairs causing clusters to appear. The ambiguity in this method lies on how

to define the weights for the nodes to begin with. In the edge betweenness method,

Girvan and Newman reverse the process by instead removing weak edges from a

graph to eventually reveal the communities underneath. Hassan et. al. describe two

categories of cluster detection methods: supervised and unsupervised [20]. In super-

vised clustering, an algorithm learns using a training dataset and then applies this

algorithm on the actual data. In unsupervised cluster detection, no training set is

used. Sometimes, both types of algorithms are used together. In some methods, the

number of clusters must be decided beforehand and in others, the number of clusters

is determined by the algorithm. Moradi et. al. point out how the sheer number of

methods used for cluster detection combined with the lack of universal definitions of

clusters and their components makes grading detection algorithms very difficult [23].

In this work, an attempt has been made to remove some of the ambiguity of

defining the rules for creating the connection matrix by using raw weights or counts

for connection weights. In Chapter 2, a method is described for forming a Markov
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monoid from the connection matrix. Then in Chapter 3, that Markov monoid is used

to calculate the entropy spectrum of the network in order to identify changes in the

network and to classify networks. In Chapter 4, the eigenvalues and eigenvectors of

the Markov monoid are used to discover clusters in the network. Finally, in Chapter

5, a special method is outlined for constructing the connection matrix from a list of

entities and their properties.
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Chapter 2

The Connection Matrix and Markov Monoids

A network is defined as a set of nodes with connections between the nodes. The anal-

ysis methods used in this project rely on first forming a connection matrix, referred

to as Ci,j, that describes the relative strength of connections between the nodes i

and j. The method by which Ci,j is formed is dependent upon the application, but

the end result is that Ci,j describes the strength of the connection between nodes i

and j where i, j = 1, 2, ...N . The element Ci,j is a non-negative number, and the

diagonal of Ci,j is undefined since it refers to a node’s connection to itself. It is also

important to point out that since the element Ci,j can be any positive real number,

it contains more information about the connection than a graph (where the elements

of Ci,j are limited to the values 1 and 0), and so the connection matrix may not be

symmetric. Analyzing and comparing different networks using connection matrices

is difficult because of the fact that there is no natural way to order the nodes. For a

network of N nodes, there are N ! ways to order the nodes and thus N ! Ci,j matrices

that describe the same network. The goal of this research is to develop methods of

analysis that identify the defining characteristics of a network, regardless of the spe-

cific representation, in the same way that series expansions can describe the dominant

components of complex phenomena.

To begin, the Ci,j matrix for a complex system of nodes is considered analogous

to a state vector for a simpler system, except for one problem. The diagonal of Ci,j is

undefined. To allow further analysis of the network using the Ci,j matrix, it is useful

to cast it into the light of something already used in physics, Markov processes, and
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specifically, the Markov monoid.

The general linear group, GL, contains many of the groups in physics and is

composed of the set of all n × n invertible matrices and the operation of matrix

multiplication. It was shown by Johnson [1] that the general linear group in N

dimensions can be decomposed into the Markov type Lie group and an abelian scaling

group. That is to say that GL = A+M where A = eaiA
i and M = eλi,jL

i,j Here, the

Ai are the basis matrices in the abelian scaling group algebra and the Li,j (i 6= j)

are the basis matrices in the Markov-type Lie group Lie algebra. In N dimensions,

there are N abelian group algebra elements and N2 − N Markov-type Lie algebra

components. The abelian group algebra basis matrices are matrices that have a 1 in

the i, i position and zeros elsewhere. For example, for the 3 × 3 basis, the abelian

group basis matrices are:

A1 =


1 0 0

0 0 0

0 0 0

A2 =


0 0 0

0 1 0

0 0 0

A3 =


0 0 0

0 0 0

0 0 1


When a member of the abelian group operates on a vector, it simply shrinks or

stretches a vector along one or more axes. By varying the coefficients that multiply

each basis matrix, any combination of stretching or shrinking along any of the n axes

can be accomplished: G(a) = eaiAi .

The Li,j Lie algebra basis matrices have a 1 in the i, j position and a −1 in the

j, j position. In other words, whichever column contains the 1 also has a −1 on the

diagonal in that same column. The 3 × 3 basis matrices for the Markov-type Lie

algebra are

L1,2 =


0 1 0

0 −1 0

0 0 0

L1,3 =


0 0 1

0 0 0

0 0 −1

L2,1 =


−1 0 0

1 0 0

0 0 0


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L2,3 =


0 0 0

0 0 1

0 0 −1

L3,1 =


−1 0 0

0 0 0

1 0 0

L3,2 =


0 0 0

0 −1 0

0 1 0


The Markov-type Lie group preserves the sums of the components of any vector

it acts upon (in contrast to a rotation which preserves the sum of the squares).

It preserves a linear form rather than a quadratic form. However, it can take a

vector with only non-negative components into a vector with negative components.

In Strang’s book, he describes how a real Markov transformation must preserve the

non-negative nature of the elements of the vector that it acts upon [13]. Johnson

showed that this requirement can be met by restricting the λi,j coefficients to be

non-negative. The Markov monoid is defined as

M(λ) = eλi,jL
i,j (2.1)

where the λi,j are non-negative. The Markov monoid represents a true Markov trans-

formation. The fact that it is monoid means that the transformation has no inverse as

is required by Markov processes. Markov transformations have no inverse since they

represent irreversible diffusion and work by transferring a non-negative fraction of

some quantity from one node to another during each transformation operation while

preserving the sum of the vector’s components. As an example, look at the following

Markov monoid using only the first two terms of the exponential expansion:

L = 0.5L1,2 + 0.2L2,1 =

−0.2 0.5

0.2 −0.5



M(λ = 1) = I + 1L =

0.8 0.5

0.2 0.5


Let M operate on a state vector.
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X1 = MX0 =

0.8 0.5

0.2 0.5


10

10

 =

13

7



X2 = MX1 =

0.8 0.5

0.2 0.5


13

7

 =

13.9

6.1


It is clear that for each operation, 50% of node 2 is transferred to node 1 and 20%

of node 1 is transferred to node 2. Applied to a physical process, this transformation

represents an irreversible diffusion with the transfer rates from one node to the other

described by the Markov monoid. Note that the sums of the columns of the Markov

monoid are always 1. Note also that this transformation represents only a redistri-

bution of the quantities described in the state vector since the sum of the elements

of the state vector remains unchanged after the transformation. Nothing is added or

taken away. This can be visualized as an aquarium of water divided by a membrane

with two, one-direction outlets placed in the membrane. According to the Markov

monoid description, if dye is placed on one side of the membrane, the distribution of

the dye will eventually reach an equilibrium state. Each successive application of M

decreases the amount of information and increases the entropy of the system as the

system moves toward equilibrium.

It was proven by Johnson [3] that every network corresponds to exactly one

Markov monoid Lie generator and vice versa. Thus they are isomorphic. Each net-

work corresponds to a family of Markov transformations. That paper showed that

the Lie algebra monoid generated all Markov transformations that are continuously

connected to the identity. To use Ci,j to form a Markov monoid, set λi,j = Ci,j for the

off diagonal terms and let the Li,j define the diagonals. The result is a Lie algebra

element,

L = λi,jL
i,j (2.2)
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with the elements of Ci,j on the off-diagonals and the negative of the column sums

on the diagonal. The Markov monoid transformation is then

M = eλL (2.3)

where λ is just a positive constant. So the network described by Ci,j defines a Lie

algebra element L which generates a Markov monoid transformation with the param-

eter λ. This M has a well defined diagonal and models the original network as a

series of flows from one node to another at rates given by the connection matrix and

described by this Markov process. In the expansion of M

M = I + λL+ 1
2!(λL)2 + 1

3!(λL)3 + ... (2.4)

the L term represents direct connections between nodes, the L2 term the secondary

(node through a node) connections, and so on. The one precaution that must be

taken is to choose λ so that the the expansion will not overpower the unit matrix.

The resulting M matrix has a well defined diagonal and thus can be used for en-

tropy calculations and eigenvalue / eigenvector analysis as Johnson demonstrated.

The columns of M are non-negative and sum to one and thus can be thought of as

probability distributions. By modeling a network as a series of flows from one node

to another, the problem of the ambiguity of the Ci,j matrix undefined diagonal has

been overcome and new avenues of analysis have been opened. These methods of

analysis are described in the following chapters.
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Chapter 3

Renyi Entropy of Networks

The ability to compare two networks is essential for two different types of inquiries.

The first type is the comparison of two completely different networks to discover sim-

ilarities. This type of analysis can be used to compare two corporations to determine

if one is more similar to successful structures or to less successful ones. It can be used

to compare the industrial outputs or other economic properties of countries. Johnson

suggests that power grids and data infrastructure can be analyzed as viewed from the

perspective of networks to determine which plans are most efficient and most effective

[2]. In the second type of inquiry, a network can be compared to itself at different

times to determine if changes have taken place. This is useful for the detection of

problems such as hardware failures, sabotage, or network intrusion. Both types of

analysis approach the problem by comparing two networks.

Johnson’s work shows that the rows and columns of the M matrix described in

the previous chapter can be used to calculate an entropy spectrum for the network

described within [3][5]. According to Renyi, the jth order Renyi entropy, Rj of a row

or column of an N by N M matrix with ai as the elements of the row or column, is

calculated by [14]

Rj = 1
1− j log2(

N∑
i=1

ai
j) (3.1)

The entropies for the row or column are then arranged in ascending order and used to

generate an interpolation function, Ij between 0 and 1. In other words, each entropy

value in the list of sorted entropies for a given order is associated with a point on a

number line between 0 and 1. The points are evenly spaced between 0 and 1 and an
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interpolation function is generated to fit the N points (x, y) where x is the value of

the point on the number line and y is the entropy value. Ij, the interpolation function

for the jth order Renyi entropy, allows a comparison between the entropy spectra of

networks with different numbers of nodes. The sorting of the entropies assigns a

sequence to the nodes and eliminates arbitrary numbering of the nodes. The sort

order by node is saved and the subsequent entropy calculations use the same sort

order. For two different networks a and b, a measure of similarity of their network jth

order entropies, Qabj, can be obtained by choosing k equally spaced points between

0 and 1 and summing the square of the differences of the interpolation functions at

those points.

Qabj =
k∑
i=1

((Ija(xi)− Ijb(xi))2) (3.2)

Using several orders of Renyi entropies for each network, an overall similarity measure,

Sab, can be obtained.

Sab =
4∏
i=2

e−Qabi (3.3)

In this equation, the value of i goes from 2 to however many orders of Renyi entropy

are included in the calculation. In this work, Renyi entropies of orders 2, 3, and 4

were used. Sab, referred to as the similarity quotient, is obviously 1 for networks with

identical entropy spectra and is lower the more the spectra differ. Using this method,

it is possible to compare unknown networks to simple representative networks of

known types. Expanding unknown networks in terms of known networks is analogous

to other analysis methods used in physics. Approximations using series expansions

such as Fourier analysis, Taylor series, and expansion in Hermite polynomials is a

fundamental concept in physics with the objective that lower order terms are more

important. Here, networks are expanded in powers of Renyi entropy and in terms of

known networks.

In this study, simple 10-node ring (Figure 3.1), cluster (Figure 3.2), and tree

(Figure 3.3) networks were used.
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Table 3.1 Comparison of Sample Network To Known Topologies

Representative Network Simlarity Quotient (Sab)
Ring 2× 10−5

Cluster 6× 10−6

Tree 0.162

It is illustrative to compare a slightly more complex network to these simple

known networks. In this case, a 9-node network with 4 symmetric clusters is used

(Figure 3.4) . The entropy spectra for the orders 2, 3, and 4 Renyi entropies for this

network are shown in Figure 3.5. Now using Equation 3.3, this unknown network can

be cast according to how similar it is to the known networks.

In this example case, in terms of entropy spectra, the unknown network is much

more similar to a representative tree network than to a ring or cluster (see Table 3.1).

This type of analysis is useful to get a feel for how a network is structured compared

to something that is easy to visualize.

Johnson has conjectured that, in principle, the connection matrix could be gen-

erated from multiple orders of the Renyi entropy, since the entropy spectra contain

the same information. In practice, however, this calculation would be very difficult

and was not attempted in this work.

This same method of calculating and comparing the entropy spectra of networks

allows for the comparison of a single network at different points in time. A change

in the entropy spectra of an optimal network could indicate a problem or at least a

change that needs attention. Under Johnson’s direction, this type of analysis on LAN

traffic was done as part of ExaSphere, a DARPA funded project by the Advanced

Solutions Group at the University of South Caroline in 2006, and has shown the

ability to detect anomalies with nontrivial numbers of nodes [4] [24].

Calculating multiple order Renyi entropies from the M matrix, sorting and main-

taining a sort order, and creating an interpolation function from these sorted en-

tropies, overcomes the problem of the renumbering of nodes. In the end, this allows
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the direct comparison of networks.

15



Figure 3.1 10-Node Ring Network: Every node connected to two neighbors
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Figure 3.2 10-Node Cluster Network: Every node connected to every other node
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Figure 3.3 10-Node Tree Network: Three-level tree
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Figure 3.4 9-Node Network with 4 Symmetric Clusters
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Figure 3.5 Entropy Spectra of 9-Node Network shown in Figure 3.4 These are the
interpolation functions between 0 and 1 for Renyi entropies of order 2, 3, and 4 (I2,
I3, I4)
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Chapter 4

Eigenvalue Clustering

Estivill-Castro describes how there is no uniquely accepted method for detecting

clusters within networks [6]. Statistical analyses, distance definitions, and density

characterizations are but a few methods used to find clusters of nodes. In each

method, the definitions depend on the data sets and on the purpose of the analysis.

Furthermore, Farber et. al. point out that there is no accepted method for evaluating

the results of the analysis [7]. The approach used in this research is fundamental and

method agnostic, and thus can be used to derive clusters in any network in a single,

very natural intuitive way.

Since the Markov matrix M can be thought of as modeling an imaginary flow

among the nodes, Johnson conjectures that the eigenvalues and eigenvectors of this

matrix can be useful in discovering clustering structures within networks [5]. The

basis of this conjecture is that the flows modeled by the Markov matrix, generated by

the modified connection matrix, has eigenvalues that represent linear combinations

of nodes which collectively approach equilibrium at the rate of the corresponding

eigenvalue and achieve this with flows among those participating nodes [5]. That

hypothesis is tested with two sample networks. They are both 10-node networks

with 3 main clusters (see Figure 4.1). In the first, the intracluster connections are

all the same strength with the connections between the clusters much weaker. The

second network is the same except for the fact that the 5-node cluster has a 3-node

cluster within it (nodes 0, 1, and 2 are more strongly connected than the others).

The eigenvectors and eigenvalues for the M matrix are calculated and then analyzed.
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By creating a threshold value based on a set fraction of the maximum component

value of all of the eigenvectors and setting components below that threshold to zero,

the nodes corresponding to the remaining non-zero elements of the eigenvector are

members of a cluster. This is known by inspection after looking at the associated

eigenvalue. After applying the threshold function, the eigenvector associated with the

lowest eigenvalue contains 5 non-zero elements. These non-zero elements correspond

to the 5 nodes that are members of the strongest cluster in the network. Similarly,

in sequence, the other eigenvalues and their associated non-zero eigenvector elements

point out the other clusters. As the eigenvalues get larger, the cluster, pointed out

by the non-zero eigenvector elements, gets weaker. Finally, the 3 largest eigenvalues

are very near 1. The nodes included by looking at their associated eigenvectors are

all the nodes in the network indicating that the entire network as a whole is seen

as a weak cluster relative to the the other clusters that were detected. The clusters

picked out by the algorithm are known to be the real clusters because the network was

set up with those clusters. The algorithm itself, however, has no information about

the network other than the connection matrix. Thus the algorithm does successfully

detect these clusters and their member nodes.

For example, for the uniform 10-node network, the following eigenvalues result:

0.99981417975, 1.0, 0.999943446785, 0.964247727554, 0.946266317865, 0.910698370842,

0.946504992867, 0.910841654779, 0.910841654779, 0.910841654779. The correspond-

ing eigenvectors all have nonzero elements. Looking at one such eigenvector, the

relative magnitudes of the components describe how strongly connected the nodes

are to the cluster associated with the corresponding eigenvalue. So a relatively high

magnitude for component j of eigenvector i implies that node j is a member of the

cluster associated with eigenvalue i. In order to make the prominent member nodes

for a particular cluster more apparent, all eigenvector components below a certain

cutoff value can be set to zero. To do this, first the maximum component magnitude
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for all of the eigenvectors is found. The cutoff value is then calculated by multiply-

ing the threshold value, in this case 0.3, by that maximum component magnitude.

Then all of the eigenvector components with magnitudes less than that of the cut-

off value is set to 0. After doing that, the prominent components of the individual

clusters is much more apparent to the eye. For example, the minimum eigenvalue,

0.910698370842 corresponds to the eigenvector

0.223246327942

0.223246327942

0.223246327943

−0.894779177086

0.223246327941

0

0

0

0

0


After setting the component values below threshold to zero, it is easy to see that nodes

0, 1, 2, 3, and 4 are the nodes that make up that strongest cluster. From strongest

to weakest, the eigenvalues and cluster members picked out by this algorithm are as

follows:

Eigenvalue: 0.910698370842: Included nodes: [0, 1, 2, 3, 4]

Eigenvalue: 0.910841654779: Included nodes: [0, 1, 2, 4]

Eigenvalue: 0.910841654779: Included nodes: [1, 2, 4]

Eigenvalue: 0.910841654779: Included nodes: [1, 2, 4]

Eigenvalue: 0.946266317865: Included nodes: [5, 6, 7]

Eigenvalue: 0.946504992867: Included nodes: [5, 7]

Eigenvalue: 0.964247727554: Included nodes: [8, 9]
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Eigenvalue: 0.99981417975: Included nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Eigenvalue: 0.999943446785: Included nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Eigenvalue: 1.0: Included nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The last three eigenvalues correspond to the the cross connects between the clus-

ters. Using the same threshold, the network that has the cluster embedded within a

cluster results in the following eigenvalues and cluster members:

Eigenvalue: 0.882491186839: Included nodes: [0, 1, 2]

Eigenvalue: 0.882491186839: Included nodes: [1, 2]

Eigenvalue: 0.926438963526: Included nodes: [0, 1, 2, 3, 4]

Eigenvalue: 0.926556991774: Included nodes: [0, 1, 2, 4]

Eigenvalue: 0.955737589687: Included nodes: [5, 6, 7]

Eigenvalue: 0.955934195065: Included nodes: [5, 7]

Eigenvalue: 0.970549538208: Included nodes: [8, 9]

Eigenvalue: 0.999846933025: Included nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Eigenvalue: 0.999953415037: Included nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Eigenvalue: 1.0: Included nodes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Here the 3-member cluster (nodes 0, 1, and 2) within the 5-node cluster is correctly

picked out as the strongest cluster.

There is a strong indication that this eigenvalue and eigenvector method of anal-

ysis does indicate the clusters within a network.
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Figure 4.1 10-Node Cluster Network: 3 clusters

25



Chapter 5

Property Clustering

Grouping items based on similar properties is the foundation of language and in-

telligence. From classifying trees based on leaf shape to describing what makes an

element an inert gas, property-based clustering allows humans to effectively commu-

nicate ideas in every aspect of life. Many types of clusters such as cars, dogs, tables,

or lamps, are obvious. This part of the research attempts to find, in a systematic

way, groupings that are not as obvious.

The final method of analysis included in this work is concerned more with a special

method for forming a Ci,j matrix than with analyzing the network with theM matrix.

In this method, Johnson discovered how a table of entities and their properties can be

used as the input to an algorithm that builds the Ci,j matrix representing how closely

related the entities are based on how similar their properties are [5]. The properties

can be weighted relative to each other to choose which properties count more in the

formation of the Ci,j matrix. In that sense, the definition of the cluster is pushed

onto the weights given to each property. When complete, the Ci,j element represents

the strength of the connection between entity i and entity j. To calculate a single

entity of the Ci,j matrix, each property of entity i is compared to the corresponding

property of entity j in the following way. First, the maximum and minimum value

of each property value is found. If max
min

> 1000 then the values are replaced with

their log. Then the standard deviation of the property values are calculated for each

property in the table. Then with N properties, Wk as the relative weight associated

with each property, σk as the standard deviation for each property, and Pik as the
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Table 5.1 Element Properties Used to Create the Connection Matrix

Mass Number Atomic Mass Melting Point
Density Boiling Pt Heat Capacity

Electronegativity(Neg10) Electronegativity(Pauling) First Ionization Energy
Atomic Radii Van der Waals Radii Covalent Radii

Valence Electrons Electrical Resistivity Poisson Ratio
Bulk Modulus Shear Modulus Heat of Fusion

Heat of Vaporization Thermal Conductivity Thermal Expansion Coef

property k value for entity i, Ci,j, is calculated with

Ci,j =
N∏
k=1

e−Wk((Pik−Pjk)/σk)2 (5.1)

Since the difference of the two properties is divided by the standard deviation, the

resulting value is dimensionless, allowing any type of property that can be enumerated

to be used in the calculation. Once all of the Ci,j elements are created, a threshold

value is set to make it easier to see the strongest connections. As in Chapter 4 with the

eigenvalue component magnitudes, all of the connections less than a set percentage of

the strongest connection are set to zero. For example, a table of the 1st 103 elements

of the periodic table with 21 properties was submitted to this analysis method with

all of the properties weighted the same. The 21 properties included in the analysis

are shown in Table 5.1:

The threshold was set to 97% of the strongest connection value and all connection

values below that threshold were set to zero. The range of the remaining connection

values is then divided into three equal groups based on strength and each connec-

tion is assigned a color based on which group it falls into. In order of strength from

strongest to weakest, the connections are colored blue, green, and red, and give the

reader a better overall view of the connections than a visual inspection of the gen-

erated connection matrix would.The figures shown below represent the strongest 3%

of the connections found, ignoring all of the weaker connections. It is important to

remember, in this case, even the weakest red connections are still in the strongest
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3% of all connections. For example, one cluster shows nickel, iron and cobalt all con-

nected. Since these connections appear above the threshold, they are in the strongest

3% of all of the connections found in the analysis. The range of connection values in

that top 3% was evenly divided into 3 parts and the connection between nickel and

cobalt falls into that top group, and thus is colored blue. The other two connections

fall into the second strongest group of the top 3% and are thus colored green.

The clusters picked out by this analysis are closely associated with each other on

the periodic table. In this case, only physical properties of the elements were used.

Tables of chemical properties would certainly result in different clusters.
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Figure 5.1 Discovered Elements Cluster 1

Figure 5.2 Discovered Elements Cluster 2
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Figure 5.3 Discovered Elements Cluster 3
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Chapter 6

Conclusion

The three methods of analysis described here offer three new ways of looking at

networks and how those networks can be classified and better understood. By mod-

eling networks as imaginary flows and using the connection matrix to generate a

Markov monoid, several analysis problems were overcome. From expanding unknown

networks in terms of known network types to finding clusters using eigenvalues /

eigenvectors and node properties, the tools developed for this study can be used to

study any type of network.

In this work, three hypotheses of Johnson’s were tested by writing the software

and performing the analysis on sample networks. First, the comparison of networks

using multi-order Renyi entropy curves was implemented. This allowed for the "dis-

tance" from unknown networks to known networks to be calculated regardless of

the relative sizes of the networks. An expansion of any network in terms of known

standard network types is possible. This same software allows for the comparison

of one network at different points in time to see how the network evolves. Second,

the idea that clusters could be detected by studying the eigenvalues and eigenvectors

of the resulting M matrix was tested and shown to be valid. The result was that

the eigenvalues showed the relative strengths of the clusters, and the elements of the

eigenvectors pointed out the nodes that were included in the clusters. Finally, the

idea that a table of properties and entities could be used to generate a connection

matrix was tested. In the table of elements, for example, the algorithm revealed

meaningful connections based on physical properties. This three-fold approach to
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network analysis was possible only after linking the network to the Markov monoid

so that traditional matrix operations could be used.

The programs built for this project and used to analyze the data described here

were written in Sage and were written to analyze networks represented by text files in

a very general format. The goal is to allow any network to be easily converted into a

form which can be analyzed using these three tools. Work on new applications based

on this research is already underway with the goal to detect network anomalies that

could indicate network intrusion. The software can be easily modified to analyze any

type of data, however, by simply writing pre-processing routines for any dataset that

puts the data in the format required by the main software routines. The analysis can

then proceed completely independent of the type of network being analyzed. The

analysis engines are general purpose, and the future uses offer many areas for other

research.
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