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Background
Markov-type Lie groups in GL(n,R); Journal of Mathematical Physics; Joseph E. Johnson; Vol. 26, No. 2, February 1985.

Background from our Past Work on Markov Transformations
• Let x1, x2, x3 … be the probabilities for something to be at the locations 1, 2, 3, ….
• Consider the group of transformations, x(t) = M(t) x(t=0), that preserves the total 

probability Σxi(t) = Σxi(0) 
• This is similar to the rotation group  which preserves Σxi2 (t) = Σxi2 (0) 

An Example
• Einstein – random walk, diffusion theory 1905
• Markov (1906) transformations (80% probable to stay put and 10% probable to move to 

the two adjacent cells): 
  |X’>  =  M  |X>  can be written as (note columns sum to unity):

 

0 0.8 0.1 0 0 0.1 0
0.1 0.1 0.8 0.1 0 0 0
0.8 0 0.1 0.8 0.1 0 1
0.1 0 0 0.1 0.8 0.1 0
0 0.1 0 0 0.1 0.8 0

Example of a discrete Markov transformation.
Note the irreversible diffusion. 
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GL(n,R) – Lie Algebra Decomposition
• Matrices with a ‘1’ at the ij position and a -1 on the diagonal at j,j can be shown to close 

into a (Markov type) Lie Algebra and form a basis of the off-diagonal matrices. 
• Matrices with only a ‘1’ on a diagonal position are a complete basis for the Abelian 

scaling Lie group.
• All general linear transformations are decomposable into these two Lie groups: Markov 

type & Abelian scaling.  

Define the Lie Algebra for  Markov Transformations 
• The Markov Lie Group is defined by transformations that preserve the sum of the 

elements of a vector ie Σ x´i = Σ xi
• The generators are defined by ‘rob Peter to pay Paul’ for M = et L where L= ΣijηijLij is 

defined by the summation over L with  a ‘1’ in row i and column j along with a ‘-1’ in the 
diagonal position row j and column j 

• In two dimensions we get: 
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Lie group defined
• And the Markov group transformation then takes the form:  
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• One notes that the column sums are unity as is required for a Markov transformation.
• This transformation gradually transforms the x2 value into the x1 value preserving  

x1 + x2 = constant.  

Higher Dimensions
• This Markov Lie Algebra can be defined on spaces of all integral dimensions (2, 3,….) 

and has n2 - n generators for n dimensions representing basis elements with a ‘1’ in the ij 
position and a ‘-1’ in the jj position.  

• This makes this basis a complete basis for all off-diagonal matrices.  E.g. in 5 
dimensions:

 L14  =  0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
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Graphically, One can Visualize This
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• These transformations in two dimensions define the group of motions on a straight line. 
• The Markov Lie group is a mapping of this line back into itself – but is NOT a translation 

group.
• In general one gets hyperplane motions.

Loss of the Markov Inverse giving a Lie monoid
• To be probabilities, non-negative values must be transformed into nonnegative values
• This exactly removes all inverses 
• Allowable transformations are those with non-negative linear combinations   
• This gives us a Lie Monoid & Irreversibility.  
 

Applications
• Our software algorithms - now available in Java and Mathematica - are a general purpose tool that can be implemented to study all forms of network dynamics and anomalies. 
• We have developed both a totally solid mathematical foundation as well as an intuitive model for interpretation. 
• We intend to utilize these algorithms to monitor the behavior of complex networks. Our patents are pending.

I
Networks described
• Networks are defined by off-diagonal non-negative elements.
• A network is totally defined by the flow rates in C
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Network topologies are 1-1 with Markov Lie gener-
ators 
• The Lie monoid basis for transformations is identical to a 

connection matrix where the diagonals are set to the negative 
of the sum of other values. 

• Thus network topologies are then 1-1 with Markov Lie 
generators

• Every possible network corresponds to exactly one Markov 
family of transformations

II
Entropies can be computed on column probability 
densities
• Markov matrix columns are probabilities
 Actually this holds to any order of expansion of M=eλC if care 

is taken to use small λ 
• Thus we can compute entropy on each column distributions.  
 We prefer to use second order Renyi entropy: log2 (N(Σxi2))

Interpretation of Generalized Entropy
• xi has a high degree of information (order) when it is 

concentrated in one area  
• The integral of the squares is maximum when xi is 

concentrated.  
• To obtain addativity of independent systems, we define the 

negative entropy (information) as I = log2 (NΣxi2)

Entropy used as a metric
• The entropy spectra is the order associated with the distributed 

transfer  
• A random uniform distribution to all nodes gives high entropy 

while an organized transfer to a few nodes give low entropy.
• The entropy function is thus measuring the order associated 

with transfer process. 

III
Spectral curve from sorted entropies
• We only care about the overall pattern
• Thus entropies are sorted in order to derive a spectral curve
• At each window of time, the sorting is redone

Normal & Anomalous Spectra
• Spectral form studied relative to normal
• Correlation to normal studied by many methods such as sums 

of squares of differences between current and normal entropy
• Two values now represent the network at a given time: row and 

column sum of squares deviation from the normal
• Wavelets and other expansions can be used on the spectra

IV
Underlying Interpretation and Model
• 1 to 1 correspondence: one network to one family of Markov 

transformations.
• The interpretation of M is a conserved flow 
• Infinitesimal lows are at the rates indicated in C 

Entropy Interpretation of the Flows
• The altered C matrix is evolving family of Markov conserved 

flows corresponding exactly to the topology.
• The entropy encapsulates the order/disorder of that nodes 

topology.
• The entire spectra captures the entire order and disorder for the 

entire network

Process 
• Network represented by two entropy spectral curves for 

incoming and outgoing links.
• They represent entropy of a conserved fluid flow on that 

topology
• Eigenvectors and eigenvalues have clear interpretation. 

Our New Applications to Networks
  I. Networks are here shown to be isomorphic with continuous Markov Monoid transformations.  

This allows the theory of Lie groups and algebras, as well as Markov processes, to be used to 
study network topology. These conserved Markov network flows provide a very rich model for 
understanding network behavior.  

 II. Generalized Renyi entropy functions can now be defined on the probability distributions that make up 
the columns of these Markov matrices reducing N values down to one entropy value. 

III. These 2N entropy spectra from each row and each column are proposed as the network metrics and 
their spectra are studied. 

IV. Interpretation


